
CSSE 220

Linked List Implementation

Checkout LinkedListSimple project from SVN

Quiz

• Get into pairs

• Look at/run the code in LinkedList.java main

• Draw a box-and-pointer diagram of what’s
happening in the main code.

• To figure it out, you’ll have to look at the
LinkedList constructor and addAtBeginning.

• If you’ve forgotten how to do box-and-pointer
diagrams, checkout the handout on Day 5 of
the schedule

Q1

Solve the Other Problems in
LinkedListSimple

• Look at toString to get an idea of how to do
size, then go from there

• They are in approximate difficulty order

• Get help if you get stuck!

DATA STRUCTURES

Understanding the engineering trade-offs when storing data

Data Structures

• Efficient ways to store data based on how
we’ll use it

• The main theme for the rest of the course

• So far we’ve seen ArrayLists
– Fast addition to end of list

– Fast access to any existing position

– Slow inserts to and deletes from middle of list

Big-O Notation

• Describes the limiting behavior

– How slow it can possibly run?

– Describes the worst case

• Used for Classifying Algorithm Efficiency

• “O” for “Order”

– O(n) said as “Order n”

– O(n^2) said as “Order n-squared”

Big-O Notation (continued)

• Don’t Care About Constants

– O(2n + 7) O(n)

• Don’t Care About Smaller Powers

– O(6n^2 + 7n) O(n^2)

– Algorithm grows asymptotically no faster than n^2

• If constant value, we say O(1) “Order 1”

– O(48) O(1)

ArrayList Performance (Revisited)

• Fast addition to end of list:

– Fast access to any existing position – O(1) (like array)

– Keep extra capacity for list growth

• Fast access includes items in capacity not yet filled – O(1)

– Capacity management is best left for CSSE230

• Slow inserts to and deletes from middle of list

– Can get to insert/delete location quickly

– For insert, shift all items right to accommodate -O(n)

– For delete, shift all items left to fill gap – O(n)

Q2

Another List Data Structure

• What if we have to add/remove data from a
list frequently?

• LinkedLists support this:

– Fast insertion and removal of elements

• Once we know where they go

– Slow access to arbitrary elements

data

data

data

data

data null

Insertion, per Wikipedia Q3-4

LinkedList<E>Methods

• void addFirst(E element)

• void addLast(E element)

• E getFirst()

• E getLast()

• E removeFirst()

• E removeLast()

• What about accessing the middle of the list?
– LinkedList<E> implements Iterable<E>

TEAM PROJECT WORK TIME

